Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Cell Host Microbe ; 31(6): 902-916, 2023 Jun 14.
Article in English | MEDLINE | ID: covidwho-20243579

ABSTRACT

Although the development and clinical application of SARS-CoV-2 vaccines during the COVID-19 pandemic demonstrated unprecedented vaccine success in a short time frame, it also revealed a limitation of current vaccines in their inability to provide broad-spectrum or universal protection against emerging variants. Broad-spectrum vaccines, therefore, remain a dream and challenge for vaccinology. This review will focus on current and future efforts in developing universal vaccines targeting different viruses at the genus and/or family levels, with a special focus on henipaviruses, influenza viruses, and coronaviruses. It is evident that strategies for developing broad-spectrum vaccines will be virus-genus or family specific, and it is almost impossible to adopt a universal approach for different viruses. On the other hand, efforts in developing broad-spectrum neutralizing monoclonal antibodies have been more successful and it is worth considering broad-spectrum antibody-mediated immunization, or "universal antibody vaccine," as an alternative approach for early intervention for future disease X outbreaks.


Subject(s)
COVID-19 , Influenza Vaccines , Orthomyxoviridae Infections , Humans , COVID-19 Vaccines , Pandemics/prevention & control , Antibodies, Viral , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing
2.
PLoS Pathog ; 19(4): e1011342, 2023 04.
Article in English | MEDLINE | ID: covidwho-2298845

ABSTRACT

Influenza outbreaks are associated with substantial morbidity, mortality and economic burden. Next generation antivirals are needed to treat seasonal infections and prepare against zoonotic spillover of avian influenza viruses with pandemic potential. Having previously identified oral efficacy of the nucleoside analog 4'-Fluorouridine (4'-FlU, EIDD-2749) against SARS-CoV-2 and respiratory syncytial virus (RSV), we explored activity of the compound against seasonal and highly pathogenic influenza (HPAI) viruses in cell culture, human airway epithelium (HAE) models, and/or two animal models, ferrets and mice, that assess IAV transmission and lethal viral pneumonia, respectively. 4'-FlU inhibited a panel of relevant influenza A and B viruses with nanomolar to sub-micromolar potency in HAE cells. In vitro polymerase assays revealed immediate chain termination of IAV polymerase after 4'-FlU incorporation, in contrast to delayed chain termination of SARS-CoV-2 and RSV polymerase. Once-daily oral treatment of ferrets with 2 mg/kg 4'-FlU initiated 12 hours after infection rapidly stopped virus shedding and prevented transmission to untreated sentinels. Treatment of mice infected with a lethal inoculum of pandemic A/CA/07/2009 (H1N1)pdm09 (pdmCa09) with 4'-FlU alleviated pneumonia. Three doses mediated complete survival when treatment was initiated up to 60 hours after infection, indicating a broad time window for effective intervention. Therapeutic oral 4'-FlU ensured survival of animals infected with HPAI A/VN/12/2003 (H5N1) and of immunocompromised mice infected with pdmCa09. Recoverees were protected against homologous reinfection. This study defines the mechanistic foundation for high sensitivity of influenza viruses to 4'-FlU and supports 4'-FlU as developmental candidate for the treatment of seasonal and pandemic influenza.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Respiratory Syncytial Virus, Human , Humans , Animals , Mice , Influenza, Human/drug therapy , Ferrets , SARS-CoV-2 , Orthomyxoviridae Infections/pathology
3.
J Ethnopharmacol ; 312: 116485, 2023 Aug 10.
Article in English | MEDLINE | ID: covidwho-2305902

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fu-Zheng-Xuan-Fei formula (FF) is a prescription that has been clinically used through the basic theory of traditional Chinese medicine (TCM) for treating viral pneumonia. Although FF possesses a prominent clinical therapeutic effect, seldom pharmacological studies have been reported on its anti-influenza B virus (IBV) activity. AIM OF THE STUDY: Influenza is an acute infectious respiratory disease caused by the influenza virus, which has high annual morbidity and mortality worldwide. With a global decline in the COVID-19 control, the infection rate of influenza virus is gradually increasing. Therefore, it is of great importance to develop novel drugs for the effective treatment of influenza virus. Apart from conventional antiviral drugs, TCM has been widely used in the clinical treatment of influenza in China. Therefore, studying the antiviral mechanism of TCM can facilitate the scientific development of TCM. MATERIALS AND METHODS: Madin-Darby canine kidney cells (MDCK) and BALB/c mice were infected with IBV, and FF was added to evaluate the anti-IBV effects of FF both in vitro and in vivo by Western blotting, immunofluorescence, flow cytometry, and pathological assessment. RESULTS: It was found that FF exhibited anti-viral activity against IBV infection both in vivo and in vitro, while inducing macrophage activation and promoting M1 macrophage polarization. In addition, FF effectively regulated the signal transducer and activator of transcription (STAT) signaling pathway-mediated Th17/Treg balance to improve the lung tissue damage caused by IBV infection-induced inflammation. The findings provided the scientific basis for the antiviral mechanism of FF against IBV infection. CONCLUSIONS: This study shows that FF is a potentially effective antiviral drug against IBV infection.


Subject(s)
COVID-19 , Herpesvirus 1, Cercopithecine , Influenza, Human , Orthomyxoviridae Infections , Mice , Animals , Dogs , Humans , Influenza B virus , T-Lymphocytes, Regulatory , Macrophage Activation , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Influenza, Human/drug therapy , Madin Darby Canine Kidney Cells
4.
Viruses ; 15(4)2023 04 16.
Article in English | MEDLINE | ID: covidwho-2290490

ABSTRACT

Influenza viruses belong to the family Orthomyxoviridae with a negative-sense, single-stranded segmented RNA genome. They infect a wide range of animals, including humans. From 1918 to 2009, there were four influenza pandemics, which caused millions of casualties. Frequent spillover of animal influenza viruses to humans with or without intermediate hosts poses a serious zoonotic and pandemic threat. The current SARS-CoV-2 pandemic overshadowed the high risk raised by animal influenza viruses, but highlighted the role of wildlife as a reservoir for pandemic viruses. In this review, we summarize the occurrence of animal influenza virus in humans and describe potential mixing vessel or intermediate hosts for zoonotic influenza viruses. While several animal influenza viruses possess a high zoonotic risk (e.g., avian and swine influenza viruses), others are of low to negligible zoonotic potential (e.g., equine, canine, bat and bovine influenza viruses). Transmission can occur directly from animals, particularly poultry and swine, to humans or through reassortant viruses in "mixing vessel" hosts. To date, there are less than 3000 confirmed human infections with avian-origin viruses and less than 7000 subclinical infections documented. Likewise, only a few hundreds of confirmed human cases caused by swine influenza viruses have been reported. Pigs are the historic mixing vessel host for the generation of zoonotic influenza viruses due to the expression of both avian-type and human-type receptors. Nevertheless, there are a number of hosts which carry both types of receptors and can act as a potential mixing vessel host. High vigilance is warranted to prevent the next pandemic caused by animal influenza viruses.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Animals , Dogs , Cattle , Horses , Humans , Swine , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , SARS-CoV-2 , Influenza A virus/genetics , Birds
5.
Front Immunol ; 14: 1098688, 2023.
Article in English | MEDLINE | ID: covidwho-2283005

ABSTRACT

Background: SARS-CoV-2 infection is a respiratory infectious disease similar to influenza virus infection. Numerous studies have reported similarities and differences in the clinical manifestations, laboratory tests, and mortality between these two infections. However, the genetic effects of coronavirus and influenza viruses on the host that lead to these characteristics have rarely been reported. Methods: COVID-19 (GSE157103) and influenza (GSE111368, GSE101702) datasets were downloaded from the Gene Expression Ominbus (GEO) database. Differential gene, gene set enrichment, protein-protein interaction (PPI) network, gene regulatory network, and immune cell infiltration analyses were performed to identify the critical impact of COVID-19 and influenza viruses on the regulation of host gene expression. Results: The number of differentially expressed genes in the COVID-19 patients was significantly higher than in the influenza patients. 22 common differentially expressed genes (DEGs) were identified between the COVID-19 and influenza datasets. The effects of the viruses on the regulation of host gene expression were determined using gene set enrichment and PPI network analyses. Five HUB genes were finally identified: IFI27, OASL, RSAD2, IFI6, and IFI44L. Conclusion: We identified five HUB genes between COVID-19 and influenza virus infection, which might be helpful in the diagnosis and treatment of COVID-19 and influenza. This knowledge may also guide future mechanistic studies that aim to identify pathogen-specific interventions.


Subject(s)
COVID-19 , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Humans , SARS-CoV-2 , Computational Biology , Gene Expression Regulation
7.
Elife ; 122023 02 08.
Article in English | MEDLINE | ID: covidwho-2236574

ABSTRACT

During respiratory viral infections, the precise roles of monocytes and dendritic cells (DCs) in the nasopharynx in limiting infection and influencing disease severity are incompletely described. We studied circulating and nasopharyngeal monocytes and DCs in healthy controls (HCs) and in patients with mild to moderate infections (primarily influenza A virus [IAV]). As compared to HCs, patients with acute IAV infection displayed reduced DC but increased intermediate monocytes frequencies in blood, and an accumulation of most monocyte and DC subsets in the nasopharynx. IAV patients had more mature monocytes and DCs in the nasopharynx, and higher levels of TNFα, IL-6, and IFNα in plasma and the nasopharynx than HCs. In blood, monocytes were the most frequent cellular source of TNFα during IAV infection and remained responsive to additional stimulation with TLR7/8L. Immune responses in older patients skewed towards increased monocyte frequencies rather than DCs, suggesting a contributory role for monocytes in disease severity. In patients with other respiratory virus infections, we observed changes in monocyte and DC frequencies in the nasopharynx distinct from IAV patients, while differences in blood were more similar across infection groups. Using SomaScan, a high-throughput aptamer-based assay to study proteomic changes between patients and HCs, we found differential expression of innate immunity-related proteins in plasma and nasopharyngeal secretions of IAV and SARS-CoV-2 patients. Together, our findings demonstrate tissue-specific and pathogen-specific patterns of monocyte and DC function during human respiratory viral infections and highlight the importance of comparative investigations in blood and the nasopharynx.


Subject(s)
COVID-19 , Communicable Diseases , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Humans , Aged , Monocytes , Tumor Necrosis Factor-alpha/metabolism , Proteomics , COVID-19/metabolism , SARS-CoV-2 , Dendritic Cells
8.
Influenza Other Respir Viruses ; 17(1): e13092, 2023 01.
Article in English | MEDLINE | ID: covidwho-2213680

ABSTRACT

BACKGROUND: Persons experiencing homelessness face increased risk of influenza as overcrowding in congregate shelters can facilitate influenza virus spread. Data regarding on-site influenza testing and antiviral treatment within homeless shelters remain limited. METHODS: We conducted a cluster-randomized stepped-wedge trial of point-of-care molecular influenza testing coupled with antiviral treatment with baloxavir or oseltamivir in residents of 14 homeless shelters in Seattle, WA, USA. Residents ≥3 months with cough or ≥2 acute respiratory illness (ARI) symptoms and onset <7 days were eligible. In control periods, mid-nasal swabs were tested for influenza by reverse transcription polymerase chain reaction (RT-PCR). The intervention period included on-site rapid molecular influenza testing and antiviral treatment for influenza-positives if symptom onset was <48 h. The primary endpoint was monthly influenza virus infections in the control versus intervention periods. Influenza whole genome sequencing was performed to assess transmission and antiviral resistance. RESULTS: During 11/15/2019-4/30/2020 and 11/2/2020-4/30/2021, 1283 ARI encounters from 668 participants were observed. Influenza virus was detected in 51 (4%) specimens using RT-PCR (A = 14; B = 37); 21 influenza virus infections were detected from 269 (8%) intervention-eligible encounters by rapid molecular testing and received antiviral treatment. Thirty-seven percent of ARI-participant encounters reported symptom onset < 48 h. The intervention had no effect on influenza virus transmission (adjusted relative risk 1.73, 95% confidence interval [CI] 0.50-6.00). Of 23 influenza genomes, 86% of A(H1N1)pdm09 and 81% of B/Victoria sequences were closely related. CONCLUSION: Our findings suggest feasibility of influenza test-and-treat strategies in shelters. Additional studies would help discern an intervention effect during periods of increased influenza activity.


Subject(s)
Ill-Housed Persons , Influenza A Virus, H1N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Humans , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Influenza A Virus, H1N1 Subtype/genetics , Oseltamivir/therapeutic use , Antiviral Agents/therapeutic use , Orthomyxoviridae Infections/drug therapy
9.
Nature ; 614(7948): 530-538, 2023 02.
Article in English | MEDLINE | ID: covidwho-2185938

ABSTRACT

Resident-tissue macrophages (RTMs) arise from embryonic precursors1,2, yet the developmental signals that shape their longevity remain largely unknown. Here we demonstrate in mice genetically deficient in 12-lipoxygenase and 15-lipoxygenase (Alox15-/- mice) that neonatal neutrophil-derived 12-HETE is required for self-renewal and maintenance of alveolar macrophages (AMs) during lung development. Although the seeding and differentiation of AM progenitors remained intact, the absence of 12-HETE led to a significant reduction in AMs in adult lungs and enhanced senescence owing to increased prostaglandin E2 production. A compromised AM compartment resulted in increased susceptibility to acute lung injury induced by lipopolysaccharide and to pulmonary infections with influenza A virus or SARS-CoV-2. Our results highlight the complexity of prenatal RTM programming and reveal their dependency on in trans eicosanoid production by neutrophils for lifelong self-renewal.


Subject(s)
12-Hydroxy-5,8,10,14-eicosatetraenoic Acid , Cell Self Renewal , Macrophages, Alveolar , Neutrophils , Animals , Mice , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , Acute Lung Injury , Animals, Newborn , Arachidonate 12-Lipoxygenase/deficiency , Arachidonate 15-Lipoxygenase/deficiency , COVID-19 , Influenza A virus , Lipopolysaccharides , Lung/cytology , Lung/virology , Macrophages, Alveolar/cytology , Macrophages, Alveolar/metabolism , Neutrophils/metabolism , Orthomyxoviridae Infections , Prostaglandins E , SARS-CoV-2 , Disease Susceptibility
10.
Cell Rep ; 41(11): 111755, 2022 12 13.
Article in English | MEDLINE | ID: covidwho-2177161

ABSTRACT

The precise mechanism by which butyrate-producing bacteria in the gut contribute to resistance to respiratory viral infections remains to be elucidated. Here, we describe a gut-lung axis mechanism and report that orally administered Clostridium butyricum (CB) enhances influenza virus infection resistance through upregulation of interferon (IFN)-λ in lung epithelial cells. Gut microbiome-induced ω-3 fatty acid 18-hydroxy eicosapentaenoic acid (18-HEPE) promotes IFN-λ production through the G protein-coupled receptor (GPR)120 and IFN regulatory factor (IRF)-1/-7 activations. CB promotes 18-HEPE production in the gut and enhances ω-3 fatty acid sensitivity in the lungs by promoting GPR120 expression. This study finds a gut-lung axis mechanism and provides insights into the treatments and prophylaxis for viral respiratory infections.


Subject(s)
Clostridium butyricum , Fatty Acids, Omega-3 , Orthomyxoviridae Infections , Humans , Clostridium butyricum/metabolism , Interferon Lambda , Up-Regulation , Fatty Acids, Omega-3/metabolism
11.
PLoS Pathog ; 18(1): e1010219, 2022 01.
Article in English | MEDLINE | ID: covidwho-2197167

ABSTRACT

Excessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously. We evaluated effects of endogenous itaconate and exogenous application of itaconate and its variants dimethyl- and 4-octyl-itaconate (DI, 4OI) on host responses to influenza A virus (IAV). Infection induced expression of ACOD1, the enzyme catalyzing itaconate synthesis, in monocytes and macrophages, which correlated with viral replication and was abrogated by DI and 4OI treatment. In IAV-infected mice, pulmonary inflammation and weight loss were greater in Acod1-/- than in wild-type mice, and DI treatment reduced pulmonary inflammation and mortality. The compounds reversed infection-triggered interferon responses and modulated inflammation in human cells supporting non-productive and productive infection, in peripheral blood mononuclear cells, and in human lung tissue. All three itaconates reduced ROS levels and STAT1 phosphorylation, whereas AKT phosphorylation was reduced by 4OI and DI but increased by itaconate. Single-cell RNA sequencing identified monocytes as the main target of infection and the exclusive source of ACOD1 mRNA in peripheral blood. DI treatment silenced IFN-responses predominantly in monocytes, but also in lymphocytes and natural killer cells. Ectopic synthesis of itaconate in A549 cells, which do not physiologically express ACOD1, reduced infection-driven inflammation, and DI reduced IAV- and IFNγ-induced CXCL10 expression in murine macrophages independent of the presence of endogenous ACOD1. The compounds differed greatly in their effects on cellular gene homeostasis and released cytokines/chemokines, but all three markedly reduced release of the pro-inflammatory chemokines CXCL10 (IP-10) and CCL2 (MCP-1). Viral replication did not increase under treatment despite the dramatically repressed IFN responses. In fact, 4OI strongly inhibited viral transcription in peripheral blood mononuclear cells, and the compounds reduced viral titers (4OI>Ita>DI) in A549 cells whereas viral transcription was unaffected. Taken together, these results reveal itaconates as immunomodulatory and antiviral interventions for influenza virus infection.


Subject(s)
Influenza A virus/immunology , Macrophages/immunology , Orthomyxoviridae Infections/drug therapy , Succinates/pharmacology , A549 Cells , Animals , Carboxy-Lyases/deficiency , Carboxy-Lyases/immunology , Cytokines/genetics , Cytokines/immunology , Humans , Macrophages/virology , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , THP-1 Cells
12.
Front Immunol ; 13: 984476, 2022.
Article in English | MEDLINE | ID: covidwho-2154723

ABSTRACT

Regulatory T cells that express the transcription factor Foxp3 (Treg cells) are a highly heterogenous population of immunoregulatory cells critical for maintaining immune homeostasis and preventing immunopathology during infections. Tissue resident Treg (TR-Treg) cells are maintained within nonlymphoid tissues and have been shown to suppress proinflammatory tissue resident T cell responses and promote tissue repair. Human populations are repetitively exposed to influenza infections and lung tissue resident effector T cell responses are associated with flu-induced long-term pulmonary sequelae. The kinetics of TR-Treg cell development and molecular features of TR-Treg cells during repeated and/or long-term flu infections are unclear. Utilizing a Foxp3RFP/IL-10GFP dual reporter mouse model along with intravascular fluorescent in vivo labeling, we characterized the TR-Treg cell responses to repetitive heterosubtypic influenza infections. We found lung tissue resident Treg cells accumulated and expressed high levels of co-inhibitory and co-stimulatory receptors post primary and secondary infections. Blockade of PD-1 or ICOS signaling reveals that PD-1 and ICOS signaling pathways counter-regulate TR-Treg cell expansion and IL-10 production, during secondary influenza infection. Furthermore, the virus-specific TR-Treg cell response displayed distinct kinetics, when compared to conventional CD4+ tissue resident memory T cells, during secondary flu infection. Our results provide insight into the tissue resident Foxp3+ regulatory T cell response during repetitive flu infections, which may be applicable to other respiratory infectious diseases such as tuberculosis and COVID.


Subject(s)
COVID-19 , Animals , Forkhead Transcription Factors/metabolism , Humans , Inducible T-Cell Co-Stimulator Protein/metabolism , Interleukin-10 , Mice , Orthomyxoviridae Infections , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Regulatory
13.
Front Immunol ; 13: 878943, 2022.
Article in English | MEDLINE | ID: covidwho-2141866

ABSTRACT

Flu, a viral infection caused by the influenza virus, is still a global public health concern with potential to cause seasonal epidemics and pandemics. Vaccination is considered the most effective protective strategy against the infection. However, given the high plasticity of the virus and the suboptimal immunogenicity of existing influenza vaccines, scientists are moving toward the development of universal vaccines. An important property of universal vaccines is their ability to induce heterosubtypic immunity, i.e., a wide immune response coverage toward different influenza subtypes. With the increasing number of studies and mounting evidence on the safety and efficacy of recombinant influenza vaccines (RIVs), they have been proposed as promising platforms for the development of universal vaccines. This review highlights the current progress and advances in the development of RIVs in the context of heterosubtypic immunity induction toward universal vaccine production. In particular, this review discussed existing knowledge on influenza and vaccine development, current hemagglutinin-based RIVs in the market and in the pipeline, other potential vaccine targets for RIVs (neuraminidase, matrix 1 and 2, nucleoprotein, polymerase acidic, and basic 1 and 2 antigens), and deantigenization process. This review also provided discussion points and future perspectives in looking at RIVs as potential universal vaccine candidates for influenza.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Antibodies, Viral , Humans , Immunity , Vaccine Development , Vaccines, Synthetic
14.
Signal Transduct Target Ther ; 7(1): 367, 2022 10 17.
Article in English | MEDLINE | ID: covidwho-2077027

ABSTRACT

The biosynthesis of host lipids and/or lipid droplets (LDs) has been studied extensively as a putative therapeutic target in diverse viral infections. However, directly targeting the LD lipolytic catabolism in virus-infected cells has not been widely investigated. Here, we show the linkage of the LD-associated lipase activation to the breakdown of LDs for the generation of free fatty acids (FFAs) at the late stage of diverse RNA viral infections, which represents a broad-spectrum antiviral target. Dysfunction of membrane transporter systems due to virus-induced cell injury results in intracellular malnutrition at the late stage of infection, thereby making the virus more dependent on the FFAs generated from LD storage for viral morphogenesis and as a source of energy. The replication of SARS-CoV-2 and influenza A virus (IAV), which is suppressed by the treatment with LD-associated lipases inhibitors, is rescued by supplementation with FFAs. The administration of lipase inhibitors, either individually or in a combination with virus-targeting drugs, protects mice from lethal IAV infection and mitigates severe lung lesions in SARS-CoV-2-infected hamsters. Moreover, the lipase inhibitors significantly reduce proinflammatory cytokine levels in the lungs of SARS-CoV-2- and IAV-challenged animals, a cause of a cytokine storm important for the critical infection or mortality of COVID-19 and IAV patients. In conclusion, the results reveal that lipase-mediated intracellular LD lipolysis is commonly exploited to facilitate RNA virus replication and furthermore suggest that pharmacological inhibitors of LD-associated lipases could be used to curb current COVID-19- and future pandemic outbreaks of potentially troublesome RNA virus infection in humans.


Subject(s)
COVID-19 Drug Treatment , Lipolysis , Orthomyxoviridae Infections , Animals , Humans , Mice , Antiviral Agents/pharmacology , Cytokines , Fatty Acids, Nonesterified , Influenza A virus , Lipase , Membrane Transport Proteins , RNA , SARS-CoV-2 , Orthomyxoviridae Infections/drug therapy
15.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2066124

ABSTRACT

Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Influenza, Human/drug therapy , Influenza, Human/prevention & control , Neuraminidase , Peptides/pharmacology , Peptides/therapeutic use
16.
J Nat Prod ; 85(11): 2583-2591, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2062146

ABSTRACT

Dihydromaniwamycin E (1), a new maniwamycin derivative featuring an azoxy moiety, has been isolated from the culture extract of thermotolerant Streptomyces sp. JA74 along with the known analogue maniwamycin E (2). Compound 1 is produced only by cultivation of strain JA74 at 45 °C, and this type of compound has been previously designated a "heat shock metabolite (HSM)" by our research group. Compound 2 is detected as a production-enhanced metabolite at high temperature. Structures of 1 and 2 are elucidated by NMR and MS spectroscopic analyses. The absolute structure of 1 is determined after the total synthesis of four stereoisomers. Though the absolute structure of 2 has been proposed to be the same as the structure of maniwamycin D, the NMR and the optical rotation value of 2 are in agreement with those of maniwamycin E. Therefore, this study proposes a structural revision of maniwamycins D and E. Compounds 1 and 2 show inhibitory activity against the influenza (H1N1) virus infection of MDCK cells, demonstrating IC50 values of 25.7 and 63.2 µM, respectively. Notably, 1 and 2 display antiviral activity against SARS-CoV-2, the causative agent of COVID-19, when used to infect 293TA and VeroE6T cells, with 1 and 2 showing IC50 values (for infection of 293TA cells) of 19.7 and 9.7 µM, respectively. The two compounds do not exhibit cytotoxicity in these cell lines at those IC50 concentrations.


Subject(s)
Antiviral Agents , Azo Compounds , COVID-19 , Influenza A Virus, H1N1 Subtype , SARS-CoV-2 , Streptomyces , Humans , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Azo Compounds/chemistry , Azo Compounds/metabolism , Azo Compounds/pharmacology , Heat-Shock Response , HEK293 Cells , Influenza A Virus, H1N1 Subtype/drug effects , Influenza, Human/drug therapy , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/drug therapy , SARS-CoV-2/drug effects , Streptomyces/chemistry , Streptomyces/metabolism , Vero Cells , Chlorocebus aethiops , Dogs
17.
Transbound Emerg Dis ; 69(5): e1734-e1748, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2052999

ABSTRACT

Equine influenza virus (EIV) is a highly contagious pathogen of equids, and a well-known burden in global equine health. EIV H3N8 variants seasonally emerged and resulted in EIV outbreaks in the United States and worldwide. The present study evaluated the pattern of cross-regional EIV H3N8 spread and evolutionary characteristics at US and global scales using Bayesian phylogeography with balanced subsampling based on regional horse population size. A total of 297 haemagglutinin (HA) sequences of global EIV H3N8 were collected from 1963 to 2019 and subsampled to global subset (n = 67), raw US sequences (n = 100) and US subset (n = 44) datasets. Discrete trait phylogeography analysis was used to estimate the transmission history of EIV using four global and US genome datasets. The North American lineage was the major source of globally dominant EIV variants and spread to other global regions. The US EIV strains generally spread from the southern and midwestern regions to other regions. The EIV H3N8 accumulated approximately three nucleotide substitutions per year in the HA gene under heterogeneous local positive selection. Our findings will guide better decision making of target intervention strategies of EIV H3N8 infection and provide the better scheme of genomic surveillance in the United States and global equine health.


Subject(s)
Horse Diseases , Influenza A Virus, H3N8 Subtype , Influenza, Human , Orthomyxoviridae Infections , Animals , Bayes Theorem , Hemagglutinins , Horse Diseases/epidemiology , Horses , Humans , Influenza A Virus, H3N8 Subtype/genetics , Nucleotides , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Phylogeography
18.
Viruses ; 14(9)2022 09 16.
Article in English | MEDLINE | ID: covidwho-2043975

ABSTRACT

Frequent outbreaks of the highly pathogenic influenza A virus (AIV) infection, together with the lack of broad-spectrum influenza vaccines, call for the development of broad-spectrum prophylactic agents. Previously, 3-hydroxyphthalic anhydride-modified bovine ß-lactoglobulin (3HP-ß-LG) was proven to be effective against human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it has also been used in the clinical control of cervical human papillomavirus (HPV) infections. Here, we show its efficacy in potently inhibiting infection by divergent influenza A and B viruses. Mechanistic studies suggest that 3HP-ß-LG binds, possibly through its negatively charged residues, to the receptor-binding domain in the hemagglutinin 1 (HA1) subunit in the HA of the influenza virus, thus inhibiting the attachment of the HA to sialic acid on host cells. The intranasal administration of 3HP-ß-LG led to the protection of mice against challenges by influenza A(H1N1)/PR8, A(H3N2), and A(H7N9) viruses. Furthermore, 3HP-ß-LG is highly stable when stored at 50 °C for 30 days and it shows excellent safety in vitro and in vivo. Collectively, our findings suggest that 3HP-ß-LG could be successfully repurposed as an intranasal prophylactic agent to prevent influenza virus infections during influenza outbreaks.


Subject(s)
COVID-19 , HIV Fusion Inhibitors , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Antibodies, Viral , Cattle , Disease Outbreaks , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinins , Humans , Influenza A Virus, H3N2 Subtype , Lactoglobulins/pharmacology , Mice , N-Acetylneuraminic Acid , Orthomyxoviridae Infections/prevention & control , SARS-CoV-2
19.
mSphere ; 7(5): e0092721, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2019747

ABSTRACT

Current influenza virus vaccines and antivirals have limitations, some of which disproportionately affect their utilization against influenza B viruses. To inform ongoing efforts to address the considerable global burden of influenza B viruses, we previously described five murine monoclonal antibodies that broadly bind conserved epitopes on the neuraminidase of influenza B viruses and protect against lethal challenge in a mouse model when delivered via intraperitoneal injection. Here, we validate the continued relevance of these antibodies by demonstrating that their protective effects extend to lethal challenge with mouse-adapted influenza B viruses recently isolated from humans. We also found that humanization of murine antibodies 1F2 and 4F11 resulted in molecules that retain the ability to protect mice from lethal challenge when administered prophylactically. Intranasal administration as an alternative route of 1F2 delivery revealed no differences in the mouse challenge model compared to intraperitoneal injection, supporting further assessment of this more targeted and convenient administration method. Lastly, we evaluated the potential for intranasal 1F2 administration initiated 1 day after infection to prevent transmission of an influenza B virus between cocaged guinea pigs. Here, we observed a 40% rate of transmission with the 1F2 antibody administered to the infected donor compared to 100% transmission with administration of an irrelevant control antibody. These data suggest that intranasal administration could be a viable route of administration for antibody therapeutics. Collectively, these findings demonstrate the potential of broad antineuraminidase antibodies as therapeutics to prevent and treat infections caused by influenza B viruses. IMPORTANCE The global health burden of influenza B viruses, especially in children, has long been underappreciated. Although two antigenically distinct influenza B virus lineages cocirculated before the coronavirus disease 2019 (COVID-19) pandemic, the commonly used trivalent seasonal vaccines contain antigens from only one influenza B virus, providing limited cross-protection against viruses of the other lineage. Additionally, studies have called into question the clinical effectiveness of the neuraminidase inhibitors that comprise the majority of available antivirals in treating influenza B virus infections. We previously described antibodies that bind broadly to neuraminidases of influenza B viruses across decades of antigenic evolution and potently protect mice against lethal challenge. Here we appraise additional factors to develop these antineuraminidase antibodies as antivirals to prevent and treat infections caused by an extensive range of influenza B viruses. In addition this work assesses recent clinical isolates belonging to the two influenza B virus lineages, finding evidence supporting the development of these antibodies for prophylactic and therapeutic use.


Subject(s)
Influenza Vaccines , Orthomyxoviridae Infections , Animals , Guinea Pigs , Humans , Mice , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral , Antiviral Agents , Disease Models, Animal , Epitopes , Influenza B virus , Neuraminidase
20.
Vaccine ; 40(38): 5569-5578, 2022 09 09.
Article in English | MEDLINE | ID: covidwho-2016159

ABSTRACT

Alphavirus-derived RNA replicon particle (RP) vaccines represent the next generation of swine influenza A virus (IAV) vaccines, as they were shown to be safe, effective, and offer advantages over traditional vaccine platforms. IAV is a significant respiratory pathogen of swine and there is a critical need to improve current commercial swine IAV vaccine platforms. Adjuvanted whole inactivated virus (WIV) IAV swine vaccines provide limited heterologous protection and may lead to vaccine-associated enhanced respiratory disease (VAERD). This study investigated the ability of RP IAV hemagglutinin (HA) vaccines to avoid VAERD and evaluated experimental multivalent HA and neuraminidase (NA) RP vaccines. RP vaccines were formulated with HA or NA heterologous or homologous to the challenge virus in monovalent HA or HA and NA bivalent combinations (HA/NA bivalent). Pigs were vaccinated with an HA RP, HA/NA bivalent RP, or heterologous HA WIV, followed by IAV challenge and necropsy 5 days post infection. RP vaccines provided homologous protection from challenge and induced robust peripheral and local antibody responses. The RP vaccine did not induce VAERD after challenge with a virus containing the heterologous HA, in contrast to the traditional WIV vaccine. The HA monovalent and HA/NA bivalent RP vaccines showed superior protection compared to traditional WIV. Additionally, the RP platform allows greater flexibility to adjust HA and NA content to reflect circulating IAV in swine antigenic diversity.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Respiratory Tract Diseases , Swine Diseases , Animals , Antibodies, Viral , Hemagglutinins , Humans , Neuraminidase/genetics , Replicon , Swine
SELECTION OF CITATIONS
SEARCH DETAIL